

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	seam 0.0 documentation 
 
      

    


    
      
          
            
  
Seam

Seam is a simple layer between neuroimaging tools and your data. It makes no decisions about how to organize your data or execute data analyses. It simply provides commands to intelligently call standard neuroimaging tools.


Contents



	Installation

	Philosophy
	Recipes vs Functions

	Backwards Compatiblity





	Contributing

	Tools
	DTI_QA

	Freesurfer












Support

If you are having problems, please raise an issue on Github. I can’t guarantee support but promise to help where I can.


	Issue Tracker: https://github.com/VUIIS/seam/issues

	Source Code: https://github.com/VUIIS/seam






License

The project is licensed under the MIT license.







          

      

      

    


    
         Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	seam 0.0 documentation 
 
      

    


    
      
          
            
  
Installation

Install the latest version with pip [https://pypi.python.org/pypi/pip]:

$ pip install seam



Seam is also distributed in the wheel format, so you can install it as a wheel:

$ pip install --use-wheel seam



Note, this requires the wheel [http://wheel.readthedocs.org/en/latest/] package along with an up-to-date pip.

To install the bleeding edge from the github repo, use the following:

$ pip install -e git+https://github.com/VUIIS/seam.git#egg=seam



Either way, it has no dependencies.





          

      

      

    


    
         Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	seam 0.0 documentation 
 
      

    


    
      
          
            
  
Philosophy

Software is best written in layers. Each layer should encapsulate knowledge about how to best use the next lower layer. Its functionality should be exposed through as simple an API as possible.

Seam extends this rationale to neuroimaging data analysis. It is up to you to organize your data and run analyses, but seam will generate commands for you to apply your data against standard neuroimaging tools.

Simply put, it builds commands around common neuroimaging tools. You’re free to do with these commands whatever you wish.

Importantly, seam is oblivious to these two otherwise-important factors:


	Data organization

	Command execution



Seam has no dependencies and requires minimal effort to use it. Seam can easily integrate into any application ranging from a single script to something much more complicated.


Recipes vs Functions

Where possible, functionality provided by seam is organized in two layers:


	Functions: low-level, highly configurable functions to produce commands or scripts.

	Recipes: high-level, less configurable functions to produce complete workflows around a tool.



Recipes will be exposed as both binaries that can be executed in a shell and as importable functions in python code. Users should first try to use recipes to accomplish their goals as these expose best practices around the tool.

If more customization is needed, the low-level functions are also available. Understandably, more effort is required to piece together the low-level functions into a meaningful processing stream.




Backwards Compatiblity

Seam makes every effort to ensure backward compatibility for the commands it generates. Because neuroimaging projects can last for very long periods, the commands generated by seam will be versioned so you can upgrade seam and still produce the same commands for a given project. Newer projects, though, can use newer versions of commands using the same seam.







          

      

      

    


    
         Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	seam 0.0 documentation 
 
      

    


    
      
          
            
  
Contributing

If you would like to contribute commands or find errors and/or better ways to build commands, please consider contributing to seam. To do so, please use the following workflow:


	Fork the repository [https://github.com/VUIIS/seam] to your own account.

	Checkout an aptly-named branch and commit your changes.

	Please add tests (and documentation) and make sure they pass. You can use $ make test to run the suite.

	Push your commits to your fork and submit a pull-request.







          

      

      

    


    
         Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	seam 0.0 documentation 
 
      

    


    
      
          
            
  
Tools


DTI_QA

This interface assists in executing Bennett Landman’s DTI_QA [http://www.ncbi.nlm.nih.gov/pubmed/23637895]
toolkit.

TBD: More documentation here.

Because DTI_QA is built upon matlab, the generated commands are m-code.


Functions


	
seam.dti_qa.dtiqa_mcode(images, basedir, dtiqa_path, n_b0=1)

	Returns m-code that can be executed in matlab to run DTI_QA





	Parameters:	
	images (str,list) – path to single raw DTI image or list of multiple

	basedir (str) – base directory to write results

	dtiqa_path (str) – path to DTI_QA installation

	n_b0 (int) – # of b0 averages (default is 1)









Usage:

>>> from seam.dti_qa.v1 import dtiqa_mcode
>>> images = ['/path/to/first.nii', '/path/to/second.nii']
>>> basedir, n_b0, dtiqa_path = '/path/to/output', 6, '/path/to/dtiqa'
>>> f = open('dti_qa.m', 'w')
>>> f.write(dtiqa_mcode(images, basedir, dtiqa_path, n_b0))
>>> f.close()













Versioning:


	V1 defines the following:


	seam.dti_qa.v1.dtiqa_mcode() that generates m-code to run DTI_QA.








Freesurfer

Freesurfer [http://surfer.nmr.mgh.harvard.edu] is a set of software
tools for the study of cortical and subcortical anatomy. In the cortical
surface stream, the tools construct models of the boundary between
white matter and cortical gray matter as well as the pial surface.
Once these surfaces are known, an array of anatomical measures becomes
possible, including: cortical thickness, surface area, curvature, and
surface normal at each point on the cortex. The surfaces can be
inflated and/or flattened for improved visualization. The surfaces can
also be used to constrain the solutions to inverse optical, EEG and MEG
problems. In addition, a cortical surface-based atlas has been defined
based on average folding patterns mapped to a sphere. Surfaces from
individuals can be aligned with this atlas with a high-dimensional
nonlinear registration algorithm. The registration is based on aligning
the cortical folding patterns and so directly aligns the anatomy instead
of image intensities. The spherical atlas naturally forms a coordinate
system in which point-to-point correspondence between subjects can be
achieved. This coordinate system can then be used to create group maps
(similar to how Talairach space is used for volumetric measurements).

Most of the FreeSurfer pipeline is automated, which makes it ideal
for use on large data sets.


Recipes


	
seam.freesurfer.v1.recipe.build_recipe(subject_id, input_data, script_dir, use_xvfb=False, recon_flags=None)[source]

	This function builds a complete pipeline around Freesufer.

It does the following:


	Imports data using recon-all -i



	
	Runs the main recon-all command with the following flags:

	
	-qcache

	-measure thickness

	-measure curv

	-measure sulc

	-measure area

	-measure jacobian_white









	Takes volumetric snapshots using tkmedit



	
	Per hemisphere:

	
	Converts the aparc.a2009s.annot file to labels in the subject’s
label directory

	Takes screenshots of the inflated surface with and without the
advanced labels.















	Parameters:	
	subject_id (str) – subject identifier

	input_data (str,list) – list of paths or string to subject’s T1 images

	script_dir (str) – directory to write scripts & screenshots

	use_xvfb (boolean) – Wrap tksurfer & tkmedit commands in xvfb-run,
useful if running in a non-graphical (ie cluster) environment.

	recon_flags (list) – other flags to pass to recon-all






	Return type:	tuple




	Returns:	paths to recon script, tkmedit script and lh & rh tksurfer scripts




	Note:	the main script is set as executable




	Note:	This function is exposed on the command line through build-recon-v1














Functions

These are lower-level functions to be used when more customization is needed than
provided by the above recipes.


	
seam.freesurfer.v1.core.recon_input(subject_id, data)[source]

	The function supplies the recon-all -i command. This command
initializes the Freesurfer directory for a subject and converts
the raw data into an internal format for use by the rest of the
recon-all pipeline.`





	Parameters:	
	subject_id (str) – Subject identifier

	data (str,list) – path(s) to input data






	Returns:	command that will execute recon-all -i command




	Return type:	str







Usage:

>>> from seam.freesurfer import recon_input
>>> recon_input('sub0001', '/full/path/to/data.nii')
'recon-all -s sub0001 -i /full/path/to/data.nii'
>>> # or with multiple inputs...
>>> recon_input('sub0001', ['/path/first.nii', '/path/second.nii'])
'recon-all -s sub0001 -i /path/first.nii -i /path/second.nii'










	
seam.freesurfer.v1.core.recon_all(subject_id, flags=None)[source]

	This function supplies the recon-all -all command. This command
will run the entire anatomical analysis suite of Freesurfer.





	Note:	Use seam.freesurfer.recon_input() to setup this subject




	Parameters:	
	subject_id (str) – Subject identifier on which to run recon-all

	flags (list) – command-line flags to pass to recon-all






	Returns:	command that will execute recon-all -all




	Return type:	str







Usage:

>>> from seam.freesurfer import recon_all
>>> recon_all('sub0001', flags=['-use-gpu'])
'recon-all -s sub0001 -all -qcache -measure thickness -measure curv -measure sulc -measure area -measure jacobian_white -use-gpu'










	
seam.freesurfer.v1.core.tkmedit_screenshot_tcl(basepath, beg=5, end=256, step=10)[source]

	Supplies a tcl string that can be used to take screenshots of a volume
using tkmedit [http://surfer.nmr.mgh.harvard.edu/fswiki/TkMeditGuide/TkMeditGeneralUsage/TkMeditInterface]

Images are written to *basepath*/tkmedit-$i.tiff
where beg <= i <= end in increments of step





	Parameters:	
	basepath – base directory to write images in

	beg (int) – Beginning slice where screenshots begin

	end (int) – End slice where screenshots end

	step (int) – Value to increment successive screenshots









Usage:

>>> from seam.freesurfer import tkmedit_screenshot_tcl
>>> f = open('tmedit_screenshots.tcl', 'w')
>>> f.write(tkmedit_screenshot_tcl('/path/to/image_dir'))
>>> f.close()
$ tkmedit sub0001 brain.finalsurfs.mgz -aseg -surfs -tcl tkmedit_screenshots.tcl










	
seam.freesurfer.v1.core.tkmedit_screenshot_cmd(subject_id, volume, tcl_path, flags=None)[source]

	Supplies a command to execute a tcl script in tkmedit for
subject_id‘s volume





	Parameters:	
	subject_id (str) – subject identifier

	volume (str) – Volume for tkmedit to load

	tcl_path (str) – Path to tcl script

	flags (list) – Flags to pass to tkmedit









Usage:

>>> from seam.freesurfer import tkmedit_screenshot_cmd
>>> tkmedit_screenshot_cmd('sub0001', 'brain.finalsurfs.mgz', '/path/tkmedit.tcl', ['-aseg', '-surfs'])
'tkmedit sub0001 brain.finalsurfs.mgz -aseg -surfs -tcl /path/tkmedit.tcl'










	
seam.freesurfer.v1.core.tksurfer_screenshot_tcl(basepath, annot='aparc.a2009s.annot')[source]

	Supplies a tcl command to take screenshots of a surface using
tksurfer [https://surfer.nmr.mgh.harvard.edu/fswiki/tksurfer]

Four screenshots are taken:


	lateral view (default view when tksurfer opens) saved to basepath-lateral.tiff

	medial view saved to basepath-medial.tiff

	Lateral view with an annotation loaded (given by annot)
saved to basepath-annot-lateral.tiff

	Medial view with an annotation loaded (given by annot)
saved to basepath-annot-medial.tiff







	Parameters:	
	basepath (str) – prefix for images to be saved

	annot (str) – annotation file to load for overlay on the surface









Usage:

>>> from seam.freesurfer import tksurfer_screenshot_tcl
>>> f = open('tksurfer.lh.tcl', 'w')
>>> f.write(tksurfer_screenshot_tcl('/path/to/screenshots/lh'))
>>> f.close()










	
seam.freesurfer.v1.core.tksurfer_screenshot_cmd(subject_id, hemi, surface, tcl_path, flags=None)[source]

	Supply a command that will run tksurfer using the surface from
subject_id‘s hemi hemisphere and execute a tcl script.





	Parameters:	
	subject_id (str) – subject identifier

	hemi (str) – ‘lh’ or ‘rh’, hemisphere to open in tksurfer

	surface (str) – surface to view

	tcl_path (str) – path to tcl script to execute

	flags (list) – flags to pass into tksurfer









Usage:

>>> from seam.freesurfer import tksurfer_screenshot_cmd
>>> tksurfer_screenshot_cmd('sub0001', 'lh', 'inflated', '/path/tksurfer.lh.tcl', ['-gray'])
'tksurfer sub0001 lh inflated -gray -tcl /path/tksurfer.lh.tcl'










	
seam.freesurfer.v1.core.annot2label_cmd(subject_id, hemi, annot_path, outdir, surface='white')[source]

	Build the mri_annotation2label commandline string.





	Parameters:	
	subject_id (str) – subject identifier

	hemi (str) – ‘lh’ or ‘rh’, hemisphere to use

	annot_path (str) – path to annotation file

	outdir (str) – output directory to place labels

	surface (str) – surface to use when generating coords in labels













Versions:

V1 defines the following recipes:


	seam.freesurfer.v1.build_recipe() for building a complete
script for executing the recon-all pipeline.



V1 defines the following functions:


	recon-all -all exposed through seam.freesurfer.v1.recon_all()

	recon-all -i exposed through seam.freesurfer.v1.recon_input()

	seam.freesurfer.v1.tkmedit_screenshot_tcl() for generating tcl
to take screenshots of a volume loaded in tkmedit.

	seam.freesurfer.v1.tkmedit_screenshot_cmd() for supplying a
command to execute tkmedit with a tcl script.

	seam.freesurfer.v1.tksurfer_screenshot_tcl() for generating a
tcl script to take screenshots of a hemisphere using tksurfer

	seam.freesurfer.v1.tksurfer_screenshot_cmd() for supplying a
command to run tksurfer and generate screenshots.

	seam.freesufer.v1.annot2label_cmd() for building a
mri_annotation2label command.











          

      

      

    


    
         Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	seam 0.0 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   s
   


   
     			

     		
       s	

     
       	[image: -]
       	
       seam	
       

     
       	
       	
       seam.dti_qa	
       

     
       	
       	
       seam.dti_qa.v1	
       

     
       	
       	
       seam.freesurfer.v1	
       

   



          

      

      

    


    
         Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	seam 0.0 documentation 
 
      

    


    
      
          
            

Index



 A
 | B
 | D
 | R
 | S
 | T
 


A


  	
      
  	annot2label_cmd() (in module seam.freesurfer.v1.core)
  


  





B


  	
      
  	build_recipe() (in module seam.freesurfer.v1.recipe)
  


  





D


  	
      
  	dtiqa_mcode() (in module seam.dti_qa)
  


  





R


  	
      
  	recon_all() (in module seam.freesurfer.v1.core)
  


  

  	
      
  	recon_input() (in module seam.freesurfer.v1.core)
  


  





S


  	
      
  	seam.dti_qa (module)
  


      
  	seam.dti_qa.v1 (module)
  


  

  	
      
  	seam.freesurfer.v1 (module)
  


  





T


  	
      
  	tkmedit_screenshot_cmd() (in module seam.freesurfer.v1.core)
  


      
  	tkmedit_screenshot_tcl() (in module seam.freesurfer.v1.core)
  


  

  	
      
  	tksurfer_screenshot_cmd() (in module seam.freesurfer.v1.core)
  


      
  	tksurfer_screenshot_tcl() (in module seam.freesurfer.v1.core)
  


  







          

      

      

    


    
         Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  _static/up.png





_modules/seam/freesurfer/v1/recipe.html


    
      Navigation


      
        		
          index


        		
          modules |


        		seam 0.0 documentation »


          		Module code »


          		seam.freesurfer »

 
      


    


    
      
          
            
  Source code for seam.freesurfer.v1.recipe

#!/usr/bin/env python
# -*- coding: utf-8 -*-

""" recipe.py

Main Recipe for V1 Recon stuff
"""
__author__ = 'Scott Burns <scott.s.burns@vanderbilt.edu>'
__copyright__ = 'Copyright 2014 Vanderbilt University. All Rights Reserved'

import os
from stat import S_IRWXU
from os.path import join
from datetime import datetime
from warnings import warn
from argparse import ArgumentParser

from ... import __version__ as version
from ...util import wrap_with_xvfb
from .core import recon_input, recon_all, tkmedit_screenshot_cmd, \
    tkmedit_screenshot_tcl, tksurfer_screenshot_cmd, tksurfer_screenshot_tcl, \
    annot2label_cmd


def recon_script_name(subject_id):
    return "{}.recon.sh".format(subject_id)

def tkmedit_tcl_name(subject_id):
    return "{}.tkmedit.tcl".format(subject_id)

def tksurfer_tcl_name(subject_id, hemi):
    return "{}.tksurfer.{}.tcl".format(subject_id, hemi)

def screenshots_dir(subject_id):
    return "{}_screenshots".format(subject_id)

def tksurfer_screenshot_basepath(script_dir, subject_id, hemi):
    return join(script_dir, screenshots_dir(subject_id), hemi)

def a2009s_file(subject_id, sd, hemi):
    return join(label_directory(subject_id, sd), '{}.aparc.a2009s.annot'.format(hemi))

def label_directory(subject_id, sd):
    return join(sd, subject_id, 'label')

def recon_parts(subject_id, input_data, recon_flags=None):
    "Build the recon_input and recon_all commands"
    recon_input_cmd = recon_input(subject_id, input_data)
    recon_all_cmd = recon_all(subject_id, recon_flags)
    return recon_input_cmd, recon_all_cmd

def tkmedit_parts(subject_id, script_dir, use_xvfb=False):
    ss_dir = join(script_dir, screenshots_dir(subject_id))
    tkmedit_tcl_script = tkmedit_screenshot_tcl(ss_dir)
    tkmedit_tcl_path = join(script_dir, tkmedit_tcl_name(subject_id))
    tkmedit_cmd = tkmedit_screenshot_cmd(subject_id, 'brain.finalsurfs.mgz',
        tkmedit_tcl_path, flags=['-aseg', '-surfs'])
    if use_xvfb:
        tkmedit_cmd = wrap_with_xvfb(tkmedit_cmd)
    return tkmedit_tcl_script, tkmedit_tcl_path, tkmedit_cmd

def tksurfer_parts(subject_id, script_dir, hemi, use_xvfb=False):
    tksurfer_tcl_path = join(script_dir,
        tksurfer_tcl_name(subject_id, hemi))
    # Basepath to screenshots
    ss_basepath = tksurfer_screenshot_basepath(script_dir, subject_id, hemi)
    # Script string
    tksurfer_tcl_script = tksurfer_screenshot_tcl(ss_basepath)
    tksurfer_cmd = tksurfer_screenshot_cmd(subject_id, hemi, 'inflated',
        tksurfer_tcl_path, ['-gray'])
    if use_xvfb:
        tksurfer_cmd = wrap_with_xvfb(tksurfer_cmd)
    return tksurfer_tcl_script, tksurfer_tcl_path, tksurfer_cmd

[docs]def build_recipe(subject_id, input_data, script_dir, use_xvfb=False,
    recon_flags=None):
    """This function builds a complete pipeline around Freesufer.

    It does the following:

    * Imports data using ``recon-all -i``
    * Runs the main ``recon-all`` command with the following flags:
        * ``-qcache``
        * ``-measure thickness``
        * ``-measure curv``
        * ``-measure sulc``
        * ``-measure area``
        * ``-measure jacobian_white``
    * Takes volumetric snapshots using ``tkmedit``
    * Per hemisphere:
        * Converts the aparc.a2009s.annot file to labels in the subject's
          ``label`` directory
        * Takes screenshots of the inflated surface with and without the
          advanced labels.

    :param str subject_id: subject identifier
    :param str,list input_data: list of paths or string to subject's T1 images
    :param str script_dir: directory to write scripts & screenshots
    :param boolean use_xvfb: Wrap ``tksurfer`` & ``tkmedit`` commands in xvfb-run,
      useful if running in a non-graphical (ie cluster) environment.
    :param list recon_flags: other flags to pass to ``recon-all``

    :rtype: tuple
    :return: paths to recon script, tkmedit script and lh & rh tksurfer scripts
    :note: the main script is set as executable
    :note: This function is exposed on the command line through ``build-recon-v1``
    """
    to_return = []
    if 'SUBJECTS_DIR' not in os.environ:
        msg = """You have not set your $SUBJECTS_DIR environment variable.

Using {} as your SUBJECTS_DIR""".format(script_dir)
        warn(msg, category=UserWarning)
        sd = script_dir
    else:
        sd = os.environ['SUBJECTS_DIR']
    # Check script directory
    if not os.path.isdir(script_dir):
        os.makedirs(script_dir)
    ss_dir = join(script_dir, screenshots_dir(subject_id))
    if not os.path.isdir(ss_dir):
        os.makedirs(ss_dir)
    now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    # recon commands
    input_cmd, all_cmd = recon_parts(subject_id, input_data, recon_flags)
    # tkmedit parts
    tkm_tcl_script, tkm_tcl_path, tkm_cmd = tkmedit_parts(subject_id,
        script_dir, use_xvfb)
    with open(tkm_tcl_path, 'w') as f:
        f.write(tkm_tcl_script)

    final_script = os.path.join(script_dir, recon_script_name(subject_id))
    to_return.append(final_script)
    to_return.append(tkm_tcl_path)
    ingredients = ["#!/bin/bash",
        "# Generated by seam version {} at {}".format(version, now),
        "",
        "# Recon Input Command",
        input_cmd,
        "",
        "# Recon All command",
        all_cmd,
        "",
        "# TKMedit Screenshots command",
        tkm_cmd,]
    for hemi in ('lh', 'rh'):
        # annot2label on the 2009 atlas
        annot_file = a2009s_file(subject_id, sd, hemi)
        label_dir = label_directory(subject_id, sd)
        a2l_cmd = annot2label_cmd(subject_id, hemi=hemi, annot_path=annot_file,
            outdir=label_dir, surface='white')
        ingredients.extend(["", "# Convert 2009 {} annotation to labels".format(hemi),
            a2l_cmd])
        # tksurfer parts
        tks_tcl_script, tks_tcl_path, tks_cmd = tksurfer_parts(subject_id,
            script_dir, hemi, use_xvfb)
        with open(tks_tcl_path, 'w') as f:
            f.write(tks_tcl_script)
        to_return.append(tks_tcl_path)
        ingredients.extend(["",
            "# TKSurfer {} Screenshot command".format(hemi),
            tks_cmd])

    with open(final_script, 'w') as f:
        f.write('\n'.join(ingredients))
        f.write('\n')
    os.chmod(final_script, S_IRWXU)
    return tuple(to_return)



def get_parser():
    desc = "Build an opinionated & complete Freesurfer script"
    epi = "Unknown flags will be passed to recon-all"
    ap = ArgumentParser(prog='build-recon-v1', description=desc,
        add_help=True, epilog=epi)
    ap.add_argument('subject_id', help="Subject Identifier")
    ap.add_argument('script_dir', help="Directory to write scripts")
    ap.add_argument('-i', '--input', action='append', help="Input images",
        dest="inputs")
    ap.add_argument('--use-xvfb', action='store_true', default=False,
        dest="use_xvfb", help="Use xvfb-run for graphical programs")
    return ap


def main():
    ap = get_parser()
    args, recon_flags = ap.parse_known_args()
    written_files = build_recipe(subject_id=args.subject_id,
        input_data=args.inputs, script_dir=args.script_dir,
        use_xvfb=args.use_xvfb, recon_flags=recon_flags)
    main_script, tkm_script, tks_lh, tks_rh = written_files
    print("Main executable script written to {}".format(main_script))

if __name__ == '__main__':
    main()





          

      

      

    


    
        © Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  

_static/plus.png





_static/comment.png





_static/down.png





_static/ajax-loader.gif





_static/file.png





_static/up-pressed.png





_modules/index.html


    
      Navigation


      
        		
          index


        		
          modules |


        		seam 0.0 documentation »

 
      


    


    
      
          
            
  All modules for which code is available


		seam.dti_qa


		seam.freesurfer


		seam.freesurfer.v1.core


		seam.freesurfer.v1.recipe








          

      

      

    


    
        © Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  

_modules/seam/freesurfer/v1/core.html


    
      Navigation


      
        		
          index


        		
          modules |


        		seam 0.0 documentation »


          		Module code »


          		seam.freesurfer »

 
      


    


    
      
          
            
  Source code for seam.freesurfer.v1.core

#!/usr/bin/env python
# -*- coding: utf-8 -*-

""" core.py

Core functions
"""

__author__ = 'Scott Burns <scott.s.burns@vanderbilt.edu>'
__copyright__ = 'Copyright 2014 Vanderbilt University. All Rights Reserved'

import os

from ...util import STRING_TYPE

base_parts = ['recon-all', '-s {subject_id}']

[docs]def recon_all(subject_id, flags=None):
    """
    This function supplies the ``recon-all -all`` command. This command
    will run the entire anatomical analysis suite of Freesurfer.

    :note: Use :func:`seam.freesurfer.recon_input` to setup this subject
    :param str subject_id: Subject identifier on which to run ``recon-all``
    :param list flags: command-line flags to pass to ``recon-all``
    :return: command that will execute ``recon-all -all``
    :rtype: str

    Usage::

      >>> from seam.freesurfer import recon_all
      >>> recon_all('sub0001', flags=['-use-gpu'])
      'recon-all -s sub0001 -all -qcache -measure thickness -measure curv -measure sulc -measure area -measure jacobian_white -use-gpu'
    """
    parts = base_parts + ['-all',
                          '-qcache',
                          '-measure thickness',
                          '-measure curv',
                          '-measure sulc',
                          '-measure area',
                          '-measure jacobian_white']
    if flags:
        parts.extend(flags)
    return ' '.join(parts).format(**locals())



[docs]def recon_input(subject_id, data):
    """
    The function supplies the ``recon-all -i`` command. This command
    initializes the Freesurfer directory for a subject and converts
    the raw data into an internal format for use by the rest of the
    ``recon-all`` pipeline.`

    :param str subject_id: Subject identifier
    :param str,list data: path(s) to input data
    :return: command that will execute ``recon-all -i`` command
    :rtype: str

    Usage::

      >>> from seam.freesurfer import recon_input
      >>> recon_input('sub0001', '/full/path/to/data.nii')
      'recon-all -s sub0001 -i /full/path/to/data.nii'
      >>> # or with multiple inputs...
      >>> recon_input('sub0001', ['/path/first.nii', '/path/second.nii'])
      'recon-all -s sub0001 -i /path/first.nii -i /path/second.nii'
    """
    parts = list(base_parts)
    if isinstance(data, STRING_TYPE):
        parts.append('-i {}'.format(data))
    else:
        # We were passed a list of images
        parts.extend(['-i {}'.format(image) for image in data])
    return ' '.join(parts).format(**locals())



[docs]def tkmedit_screenshot_tcl(basepath, beg=5, end=256, step=10):
    """
    Supplies a tcl string that can be used to take screenshots of a volume
    using `tkmedit <http://surfer.nmr.mgh.harvard.edu/fswiki/TkMeditGuide/TkMeditGeneralUsage/TkMeditInterface>`_

    Images are written to ``*basepath*/tkmedit-$i.tiff``
    where *beg* <= i <= *end* in increments of *step*

    :param basepath: base directory to write images in
    :param int beg: Beginning slice where screenshots begin
    :param int end: End slice where screenshots end
    :param int step: Value to increment successive screenshots

    Usage::

      >>> from seam.freesurfer import tkmedit_screenshot_tcl
      >>> f = open('tmedit_screenshots.tcl', 'w')
      >>> f.write(tkmedit_screenshot_tcl('/path/to/image_dir'))
      >>> f.close()
      $ tkmedit sub0001 brain.finalsurfs.mgz -aseg -surfs -tcl tkmedit_screenshots.tcl
    """
    template = """for {{ set i {beg} }} {{ $i < {end} }} {{ incr i {step} }} {{
SetSlice $i
RedrawScreen
SaveTIFF {tiff_path}
}}
exit
"""
    tiff_path = os.path.join(basepath, 'tkmedit-$i.tiff')
    return template.format(**locals())



[docs]def tkmedit_screenshot_cmd(subject_id, volume, tcl_path, flags=None):
    """
    Supplies a command to execute a tcl script in ``tkmedit`` for
    *subject_id*'s *volume*

    :param str subject_id: subject identifier
    :param str volume: Volume for tkmedit to load
    :param str tcl_path: Path to tcl script
    :param list flags: Flags to pass to ``tkmedit``

    Usage::

      >>> from seam.freesurfer import tkmedit_screenshot_cmd
      >>> tkmedit_screenshot_cmd('sub0001', 'brain.finalsurfs.mgz', '/path/tkmedit.tcl', ['-aseg', '-surfs'])
      'tkmedit sub0001 brain.finalsurfs.mgz -aseg -surfs -tcl /path/tkmedit.tcl'
    """
    template = "tkmedit {subject_id} {volume} {flag_string} -tcl {tcl_path}"
    if flags:
        flag_string = ' '.join(flags)
    return template.format(**locals())



[docs]def tksurfer_screenshot_tcl(basepath, annot='aparc.a2009s.annot'):
    """
    Supplies a tcl command to take screenshots of a surface using
    `tksurfer <https://surfer.nmr.mgh.harvard.edu/fswiki/tksurfer>`_

    Four screenshots are taken:

    * lateral view (default view when ``tksurfer`` opens) saved to *basepath*-lateral.tiff
    * medial view saved to *basepath*-medial.tiff
    * Lateral view with an annotation loaded (given by *annot*)
      saved to *basepath*-annot-lateral.tiff
    * Medial view with an annotation loaded (given by *annot*)
      saved to *basepath*-annot-medial.tiff

    :param str basepath: prefix for images to be saved
    :param str annot: annotation file to load for overlay on the surface

    Usage::

     >>> from seam.freesurfer import tksurfer_screenshot_tcl
     >>> f = open('tksurfer.lh.tcl', 'w')
     >>> f.write(tksurfer_screenshot_tcl('/path/to/screenshots/lh'))
     >>> f.close()
    """
    template = """make_lateral_view;
redraw;
save_tiff {basepath}-lateral.tiff;
rotate_brain_y 180;
redraw;
save_tiff {basepath}-medial.tiff;
labl_import_annotation {annot};
redraw;
make_lateral_view;
redraw;
save_tiff {basepath}-annot-lateral.tiff;
rotate_brain_y 180;
redraw;
save_tiff {basepath}-annot-medial.tiff;
exit;"""
    return template.format(**locals())



[docs]def tksurfer_screenshot_cmd(subject_id, hemi, surface, tcl_path, flags=None):
    """
    Supply a command that will run ``tksurfer`` using the *surface* from
    *subject_id*'s *hemi* hemisphere and execute a tcl script.

    :param str subject_id: subject identifier
    :param str hemi: 'lh' or 'rh', hemisphere to open in tksurfer
    :param str surface: surface to view
    :param str tcl_path: path to tcl script to execute
    :param list flags: flags to pass into ``tksurfer``

    Usage::

      >>> from seam.freesurfer import tksurfer_screenshot_cmd
      >>> tksurfer_screenshot_cmd('sub0001', 'lh', 'inflated', '/path/tksurfer.lh.tcl', ['-gray'])
      'tksurfer sub0001 lh inflated -gray -tcl /path/tksurfer.lh.tcl'
    """
    template = "tksurfer {subject_id} {hemi} {surface} {flag_string}-tcl {tcl_path}"
    if flags:
        flag_string = ' '.join(flags) + ' '
    else:
        flag_string = ''
    return template.format(**locals())



[docs]def annot2label_cmd(subject_id, hemi, annot_path, outdir, surface='white'):
    """
    Build the mri_annotation2label commandline string.

    :param str subject_id: subject identifier
    :param str hemi: 'lh' or 'rh', hemisphere to use
    :param str annot_path: path to annotation file
    :param str outdir: output directory to place labels
    :param str surface: surface to use when generating coords in labels
    """
    template = "mri_annotation2label --subject {subject_id} --hemi {hemi} --annotation {annot_path} --outdir {outdir} --surface {surface}"
    return template.format(**locals())






          

      

      

    


    
        © Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  

_static/comment-bright.png





_static/comment-close.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		seam 0.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2014, Scott Burns.
      Created using Sphinx 1.2.
    

  

_static/down-pressed.png





_static/minus.png





